Variational Quantum Algorithms as Machine Learning Models

Stefano Mangini XXXV° cycle Supervisor: Prof. Chiara Macchiavello Quantum Information Theory Group **OUI** University of Pavia, Italy

End-of-Year PhD Seminars, Department of Physics, University of Pavia 1\0ctober\2021

Quantum Machine Learning

State of the art, drawbacks and future possibilities

PhD End-of-Yeer Seminars Internity of Payle Department of Physics

Stefano Mangini xxxin ande Supervisor Prof. Chiara Macchievello luantum information Theory Group (QUIT)

1/Octoberi 2020

Hype behind QML

Previously on End-of-Year Seminars...

Quantum Machine Learning State of the art, drawbacks and future possibilities

Quantum Machine Learning

State of the art, drawbacks and future possibilities

PhD End-of-Yeer Seminars

Stefano Mangini xxxv* ayda Expervisor Prof. Chiara Macchievello m Information Theory Group (DUF

Contribuci 2020

Hype behind QML

Previous y on End-of-Year Seminars...

Variational Quantum Algorithms as Machine Learning Models

Quantum Machine Learning State of the art, drawbacks and future possibilities

Introduction **1. Quantum Neuron** 2. Variational Learning **3. A concrete application**

Outlooks

Quantum Machine Learning

Quantum computing

Machine Learning

X

...do we have Quantum Computers?

Yes! sort of...

Different technologies

Superconducting circuits (IBM, Google)

Ion Traps (IonQ, Honeywell)

Photonics (Xanadu, PsiQuantum)

Noisy ntermediate Scale Juantum

qubits are subject to error rates $\sim 98\%$

current best quantum hardware $\sim 50/100$ qubits

Implementation Shor's algorithm requires $\sim 20M$ qubits won't be around for ? years and need Error Correction...

Neutral Atoms (Pasqal)

Variational (NISQ-friendly) Paradigm

theoretical success guarantees

Variational quantum algorithms

requires few qubits

Parametrized gates

 $R_{y}(\theta) = e^{i\theta\sigma_{y}/2}$

uses few gates (operations)

somewhat resilient to noise

Repeat until convergence

too good to be true... usually no provable guarantees, but heuristic results

~ ~ $\partial L/\partial \theta$ update parameters

Loss function embedding the task to be solved (e.g. minimize energy of a variational state)

Variational (NISQ-friendly) Paradigm

theoretical success guarantees

too good to be true... usually no provable guarantees, but heuristic results

Quantum Neural Networks

antum algorithms Variational

requires few qubits

Parametrized gates

 $R_{\rm y}(\theta) = e^{i\theta\sigma_{\rm y}/2}$

uses few gates (operations)

somewhat resilient to noise

 $\partial L/\partial \theta$ update

parameters

Repeat until convergence

> Loss function embedding the task to be solved (e.g. minimize energy of a variational state)

> > Stefano Mangini, EoY PhD Seminar, 01/10/21

~

~

Various QNN/QML models [0]

Classical Neural Networks

Quantum Neural Networks

$S_1(\boldsymbol{x}) \mid U_1(\boldsymbol{\theta_1})$ $|0\rangle^{\otimes n}$

Quantum Perceptrons Encoding $|0\rangle^{\otimes n}$ U_w U_i qubits Ancilla $\oplus \frown$ Activation function

[0] S. Mangini et al., "Quantum computing models for artificial neural networks", EPL (Europhysics Letters) 2, 1 (2021).

Quantum Kernel Methods

 $K(\mathbf{x},\mathbf{x}')$

Quantum Convolutional Neural Networks Quantum Dissipative Neural Networks

Introduction **1. Quantum Neuron 2. Variational Learning 3. A concrete application** Outlooks

A Quantum Perceptron

Takes inputs,
has weights (i.e. trainable parameters)Scalar product of inputs and weightsNonlinear activation function

[1] S. Mangini et al., "Quantum computing model of an artificial neuron with continuously valued input data", Mach. Learn.: Sci. Technol. 1 045008 (2020).

Activation function

promoted to quantum states

inner product in Hilbert space

nonlinearity induced by measurement

$$f(x) \longrightarrow \langle \psi_{w} | \psi_{i} \rangle - \iota \cdot$$

$$f(x) \longrightarrow \left| \langle \psi_{w} | \psi_{i} \rangle \right|^{2}$$

 $\vec{i}, \vec{w} \longrightarrow |\psi_i\rangle, |\psi_w\rangle$

Pattern classification

i = (255, 170, 85, 0) $i_j \in [0, 255]$

Introduction 1. Quantum Neuron 2. Variational Learning 3. A concrete application Outlooks

Size matters [2]

 $|\psi_i
angle$

Circuit implementation is inefficient (too big). Instead of using the exact circuit for the quantum neuron, let's try to implement a variational approximation of it!

 $\langle \psi_i | \psi_w \rangle \longrightarrow | \langle \psi_i | \psi_w \rangle |^2$

[2] F. Tacchino, S. Mangini et al., "Variational Learning for Quantum Artificial Neural Networks", IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021) Stefano Mangini, EoY PhD Seminar, 01/10/21

Variational

approximation

Variational "ansatz" $V(\theta^*) \approx QN(w)$

 $heta^*$ optimal angles Note: optimal values are specific to a w

> measures the distance between

Optimization problem:

 $\mathcal{F}(\boldsymbol{\theta}) = 1 - |\langle 11 \dots 1 | V(\boldsymbol{\theta}) | \psi_{\boldsymbol{w}} \rangle|^2$ $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathcal{F}(\boldsymbol{\theta})$

Global and Local cost functions

 $V(\boldsymbol{\theta})$

 $\mathcal{F}(\boldsymbol{\theta}) = 1 - |\langle 11 \dots 1 | V(\boldsymbol{\theta}) | \psi_{\boldsymbol{w}} \rangle|^2 \quad \mathcal{F}(\boldsymbol{\theta})$

Minimize **single** but **difficult** cost function

[2] F. Tacchino, S. Mangini et al., "Variational Learning for Quantum Artificial Neural Networks", IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021) Stefano Mangini, EoY PhD Seminar, 01/10/21

9

Local strategy

 $\mathcal{F}_{j}(\boldsymbol{\theta_{j}}) = 1 - \langle 1 | \mathrm{Tr}_{j+1,\dots,N}[\rho_{j}] | 1 \rangle$

Minimize **multiple** but **easy** cost functions

Noise free: everything works out

[2] F. Tacchino, S. Mangini et al., "Variational Learning for Quantum Artificial Neural Networks", IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021) Stefano Mangini, EoY PhD Seminar, 01/10/21

Global vs. Local: noise plays major role

0

[2] F. Tacchino, S. Mangini et al., "Variational Learning for Quantum Artificial Neural Networks", IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021) Stefano Mangini, EoY PhD Seminar, 01/10/21

Number of optimization steps to reach target fidelity in presence of measurement noise.

In presence of noise... buy Local.

Introduction 1. Quantum Neuron 2. Variational Learning 3. A concrete application

Outlooks

Quantum computing feat. Eni

and classifier to analyze data from a separator.

A separator

[3] S. Mangini et al., "Quantum neural network encoder and classifier applied to an industrial case study", under review (2021)

Use of quantum computers for an industrial case study. In particular, build a quantum autoencoder

1. Data compression

2. Classification

$$y \in \mathbb{R}^2 \longrightarrow$$

Quantum Autoencoder and Classifier

1. Quantum Autoencoder

Compressed quantum state

 $|0\rangle$

2. Quantum Classifier

Trained Quantum Autoencoder

[3] S. Mangini et al., "Quantum neural network encoder and classifier applied to an industrial case study", under review (2021)

Introduction **1. Quantum Neuron 2. Variational Learning 3. A concrete application** Outlooks

Plans for the future year...

Is QML actually useful?

Preliminary sobering results in the literature (classical ML is too good) New analysis and algorithms Study different use cases

Broaden research in Quantum Information and Computing

Quantum Noise Quantum Thermodynamics Classical ML to analyze Quantum Processes

You should study QML

 $22_{/22}$

References

[0] S. Mangini et al., "Quantum computing models for artificial neural networks", EPL (Europhysics Letters) 2, 1 (2021).
[1] S. Mangini et al., "Quantum computing model of an artificial neuron with continuously valued input data", Mach. Learn.: Sci. Technol. 1 045008 (2020).
[2] F. Tacchino, S. Mangini et al., "Variational Learning for Quantum Artificial Neural Networks", IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021).
[3] S. Mangini et al., "Quantum autoencoder and classifier applied to an industrial case study", under review (2021).

Group members: Chiara Macchiavello, Dario Gerace, Daniele Bajoni (Univ. of Pavia), Francesco Tacchino (IBM Quantum)

End-of-Year PhD Seminars, Department of Physics, University of Pavia 1\October\2021

the end.

