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Quantum computing
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…do we have Quantum Computers?

Yes! sort of… 

Noisy

Intermediate

Scale

Quantum

qubits are subject to error rates ∼ 98 %
current best quantum hardware  qubits∼ 50/100

Superconducting circuits 
(IBM, Google)

Ion Traps 
(IonQ, Honeywell)

Photonics 
(Xanadu, PsiQuantum)

Neutral Atoms 
(Pasqal)

. . .

Different technologies

Implementation Shor’s algorithm requires  qubits 

won’t be around for ? years and need Error Correction… 

∼ 20M
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Variational (NISQ-friendly) Paradigm 

“Usual” quantum algorithms (Shor)

requires many qubits

uses lots of gates (operations)

assumes ideal execution (noise free)

Y

H

H

X

U

theoretical success guarantees 

Variational quantum algorithms

requires few qubits

uses few gates (operations)

  somewhat resilient to noise

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

Parametrized gates

Ry(θ) = eiθσy/2

Loss function embedding the task to be solved  
(e.g. minimize energy of a variational state)

⟨O⟩θ}
update 

parameters

Repeat until 
convergence

too good to be true… 
usually no provable 
guarantees, but 
heuristic results

qubit

operation
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Various QNN/QML models [0]

Classical Neural Networks

θ
Input layer Hidden layers

x

Quantum Neural Networks

Activation function

Ancilla

Encoding 
qubits|0⟩⊗n

x, x′ 

|0⟩⊗n

K(x, x′ )

CL PL CL PL FCL

ρin

ρout

. . .|0⟩⊗n

x

. . .

. . .

. . .

Quantum Kernel Methods

Quantum Perceptrons Quantum Convolutional Neural Networks

discard}

|0⟩⊗n

|0⟩⊗n

ρin

ρout

l = 1

l = L

l = 2

discard}

⋮

Quantum Dissipative Neural Networks

[0] S. Mangini et al., “Quantum computing models for artificial neural networks”, EPL (Europhysics Letters) 2, 1 (2021).
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A Quantum Perceptron 1

Nonlinear activation function

[1] S. Mangini et al., “Quantum computing model of an artificial neuron with continuously valued input data”, Mach. Learn.: Sci. Technol. 1 045008 (2020).

i0

i1

in−1

n−1

∑
j=0

ijwj
Output

w0

w1

wn−1

i

Input 
vector

Weight vector

w

y = f(i ⋅ w)

Scalar product  of inputs and weights

Takes inputs,  
has weights (i.e. trainable parameters)

Quantum

Activation function

Ancilla

Encoding 
qubits|0⟩⊗n

⃗i , ⃗w ⟶ |ψi⟩ , |ψw⟩ promoted to 
quantum states

⃗i ⋅ ⃗w ⟶ ⟨ψw |ψi⟩ = ⃗i ⋅ ⃗w inner product in 
Hilbert space

f(x) ⟶ ⟨ψw |ψi⟩
2 nonlinearity induced by 

measurement

Neural Network
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Pattern classification

255 170

85 0
i = (255,170,85,0)

ij ∈ [0,255]

Grayscale images
Normalization i → π/2
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[1] S. Mangini et al., “Quantum computing model of an artificial neuron with continuously valued input data”, Mach. Learn.: Sci. Technol. 1 045008 (2020).
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|ψi⟩ QN(w)

Size matters [2]

[2] F. Tacchino, S. Mangini et al., "Variational"Learning"for"Quantum"Artificial Neural Networks”, IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021)

2
Circuit implementation is inefficient (too big). Instead of using the exact circuit for the quantum 
neuron, let’s try to implement a variational approximation of it! 

Exact implementation

V(θ)

Variational “ansatz”

approximation

V(θ*) ≈ QN(w)

  optimal angles θ*
Variational

Note: optimal values are specific to a w

Optimization problem:

θ* = arg minθ

measures the 
distance between  

V and QN are

|ψi⟩ ⟨ψi |ψw⟩ |⟨ψi |ψw⟩ |2⟶ ⟶
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V(θ)

15

Global and Local cost functions

Global strategy Local strategy

|ψw⟩
. . .

. . .
. . .

R(θ) ℰ

V1(θ1)

repeated 
-timesn1

V2(θ2)

repeated 
-timesn2

repeated 
-timesn

disentangle qubit, and send it as 

close as possible to |1⟩

2

Minimize single but difficult cost function Minimize multiple but easy cost functions
<

<=
?

[2] F. Tacchino, S. Mangini et al., "Variational"Learning"for"Quantum"Artificial Neural Networks”, IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021)
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Noise free: everything works outEngineeringuantum
Transactions onIEEE

Tacchino et al.: VARIATIONAL LEARNING FOR QUANTUM ARTIFICIAL NEURAL NETWORKS

FIG. 2. Comparison of output activation pout = |〈ψw|ψi〉|2 among the exact (hypergraph states routine), global (n = 3), and local (n′ = 2) approximate
implementations of Uw . The inset shows the general mapping of any 16-dimensional binary vector !b onto the 4 × 4 binary image (b) and the
cross-shaped !w used in this example (c). The selected inputs on which the approximations are tested were chosen to cover all the possible cases for
pout and are labeled with their corresponding integer ki (see the main text).

We implemented both versions of the variational training
in Qiskit [42], combining exact simulation of the quantum
circuits required to evaluate the cost function with classical
Nelder–Mead [43] andCobyla [44] optimizers from the scipy
Python library. We !nd that the values n = 3 and n′ = 2
allow the routine to reach total !delities to the target state
|1〉⊗N well above 99.99%. As shown in Fig. 2, this, in turn,
guarantees a correct reproduction of the exact activation
probabilities of the quantum arti!cial neuron with a quan-
tum circuit depth of 19 (29) for the global (qubit-by-qubit)
strategy, as compared to the total depth equal to 49 for the
exact implementation of Uw using hypergraph states. This
counting does not include the gate operations required to
prepare the input state, i.e., it only evidences the different
realizations of the Uw implementation assuming that each
|ψi〉 is provided already in the form of a wavefunction. More-
over, the multicontrolled CPZ operations appearing in the
exact version were decomposed into single-qubit rotations
and cnots without the use of additional working qubits.
Notice that these conditions are the ones usually met in real
near-term superconducting hardware endowed with a !xed
set of universal operations.

D. STRUCTURE OF THE ANSATZ AND SCALING
PROPERTIES
In many practical applications, the implementation of the
entangling block E could prove technically challenging, in
particular for near-term quantum devices based, e.g., on su-
perconducting wiring technology, for which the available
connectivity between qubits is limited. For this reason, it
is useful to consider a more hardware-friendly entangling
scheme, which we refer to as nearest neighbors. In this case,

each qubit is entangled only with at most two other qubits,
essentially assuming the topology of a linear chain

Enn =
3∏

q=1

cnotq,q+1. (20)

This scheme may require even fewer two-qubit gates to be
implemented with respect to the all-to-all scheme presented
above. Moreover, this entangling unitary !ts perfectly well
on those quantum processors consisting of linear chains of
qubits or heavy hexagonal layouts.
We implemented both global and local variational learning

procedures with nearest neighbor entanglers in Qiskit [42],
using exact simulation of the quantum circuits with classical
optimizers to drive the learning procedure. In the follow-
ing, we report an extensive analysis of the performances
and a comparison with the all-to-all strategy introduced in
Section III-C. All the simulations are performed by assuming
the same cross-shaped target weight vector !w depicted in
Fig. 2.
In Fig. 3, we show an example of the typical optimization

procedure for three different choices of the ansatz depth (i.e.,
number of entangling cycles) n = 1, 2, 3, assuming a global
cost function. Here, we !nd that n = 3 allows the routine to
reach a !delity F (!θ ) to the target state |1〉⊗N above 99%.
In the local qubit-by-qubit variational scheme, we can

actually introduce an additional degree of freedom by al-
lowing the number of cycles per qubit, n′, to vary between
successive layers corresponding to the different stages of the
optimization procedure. For example, we may want to use a
deeper ansatz for the !rst unitary acting on all the qubits and
shallower ones for smaller subsystems. We, thus, introduce a

3101110 VOLUME 2, 2021

2

[2] F. Tacchino, S. Mangini et al., "Variational"Learning"for"Quantum"Artificial Neural Networks”, IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021)
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Global vs. Local: noise plays major role

Number of optimization 
steps to reach target 
fidelity in presence of 
measurement noise.

In presence of noise… 
buy Local.

Engineeringuantum
Transactions onIEEE

Tacchino et al.: VARIATIONAL LEARNING FOR QUANTUM ARTIFICIAL NEURAL NETWORKS

FIG. 6. Number of iterations of the classical optimizer to reach a fidelity
of F = 95%. Each point in the plot is obtained by running the
optimization procedure ten times and then evaluating the mean and
standard deviation (shown as error bars in the plot). All results refer to
exact simulations of the quantum circuits in the absence of statistical
measurement sampling or device noise, performed with Qiskit
statevector_simulator.

to reach a given target !delity when the number of qubits
increases. This actually should not come as a surprise, since
the number of parameters to be optimized in the two cases is
different. In fact, in the global scenarios, there are N + N · n
(the !rst N is due to the initial layer of rotations) to be opti-
mized, while in the local case there areN + N · n′

1 for the !rst
layer, (N − 1) + (N − 1) · n′

2 for the second,...; for a total of

#local =
N∑

q=2

q+ qn′
q + 3 (21)

where the !nal 3 is due to the fact that the last layer
always consists of a rotation on the Bloch sphere with
three parameters, see (19). Using the stepwise decreasing
structure, that is, n′

q = q− 1, we eventually obtain
∑N

q=2 q+ q(q− 1) =
∑N

q=2 q
2 ∼ O(N3), compared to

#global ∼ O(N2). Here, we are assuming a number of layers
n = N − 1, consistently with the N = 4 qubits case (see
Fig. 3). While, in the global case, the optimization makes
full use of the available parameters to globally optimize
the state toward |1〉⊗N , the local unitary has to go through
multiple disentangling stages, requiring (at least for the cases
presented here) more classical iteration steps. At the same
time, it would probably be interesting to investigate other ex-
amples in which the number of parameters between the two
alternative schemes remains !xed, as this would most likely
narrow the differences and provide amore direct comparison.
In agreement with similar investigations [45], we can ac-

tually conclude that only modest differences between global
and local layerwise optimization approaches are present
when dealing with exact simulations (i.e., free from statisti-
cal and hardware noise) of the quantum circuit. Indeed, both
strategies achieve good results and a !nal !delity F (!θ ) >

99%. At the same time, it becomes interesting to investigate
how the different approaches behave in the presence of noise

FIG. 7. Optimization of cost functions for the (a) local and (b) global
case in the presence of measurement noise for N = 5 qubits. In each
figure, we plot the mean values averaged on five runs of the simulation.
The shaded colored areas denote one standard deviation. The number of
measurement repetitions in each simulation was 1024. The final fidelity
at the end of the training procedure in this case were
Flocal = 0.87 ± 0.02 and Fglobal = 0.89 ± 0.02. Notice the difference in
the horizontal axes bounds. (a) Optimization of the local cost functions
Vj (!θ j ) [see (13)], plotted with different colors for clarity. The vertical
dashed lines denotes the end of the optimization of one layer, and the
start of the optimization for the following one. (b) Optimization of the
global cost function V (!θ) in (11).

and speci!cally statistical noise coming from measurements
operations. For this reason, we implemented the measure-
ment sampling using the Qiskit qasm_simulator and
employed a stochastic gradient descent (SPSA) classical
optimization method. Each benchmark circuit is executed
nshots = 1024 times in order to reconstruct the statistics of
the outcomes. Moreover, we repeat the stochastic optimiza-
tion routine multiple times to analyze the average behav-
ior of the cost function. In Fig. 7, we show the optimiza-
tion procedure for the local and global cost functions in the
presence of measurement noise, with both of them reaching
acceptable and identical !nal !delities Flocal = 0.87 ± 0.02
and Fglobal = 0.89 ± 0.02. Notice that for the local case [see
Fig. 7(a)], each colored line indicates the optimization of a
Vj(!θ j ) from (13). We observe that the training for the local
model generally requires fewer iterations, with an effective
optimization of each single layer. On the contrary, in the pres-
ence of measurement noise, the global variational training
struggles to !nd a good direction for the optimization and
eventually follows a slowly decreasing path to the minimum.
These !ndings look to be in agreement, e.g., with results
from [45] and [46]: with the introduction of statistical shot
noise, the performances of the global model are heavily af-
fected, while the local approach proves to be more resilient
and capable of !nding a good gradient direction in the pa-
rameters space [46]. In all these simulations, the parameters
in the global unitary and in the !rst layer of the local unitary
were initialized with a random distribution in [0, 2π ). All

3101110 VOLUME 2, 2021

2

[2] F. Tacchino, S. Mangini et al., "Variational"Learning"for"Quantum"Artificial Neural Networks”, IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021)
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3Quantum computing feat. Eni 3
Use of quantum computers for an industrial case study. In particular, build a quantum autoencoder 
and classifier to analyze data from a separator.

A separator 1. Data compression

x ∈ ℝ4

(xFRC, xFT, xLIC, xPI)
y ∈ ℝ2

2. Classification

y ∈ ℝ2
Class A

Class B

[3] S. Mangini et al., “Quantum neural network encoder and classifier applied to an industrial case study ”, under review (2021)
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Quantum Autoencoder and Classifier 3

[3] S. Mangini et al., “Quantum neural network encoder and classifier applied to an industrial case study ”, under review (2021)
20

|0⟩

|0⟩
|ψ⟩ |output⟩ ≈ |ψ⟩

Compressed quantum state

|ψ⟩

Trained Quantum Autoencoder

(θ*)
|0⟩

U(ϕ)
|0⟩

|1⟩
Class A

Class B

Quantum Classifier Accuracy ∼ 85 %
Real device: ∼ 83 %

1. Quantum Autoencoder

2. Quantum Classifier
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Plans for the future year…

Broaden research in Quantum Information and Computing 
Quantum Noise 
Quantum Thermodynamics 
Classical ML to analyze Quantum Processes 

Is QML actually useful? 
Preliminary sobering results in the literature (classical ML is too good) 
New analysis and algorithms  
Study different use cases 

Q1

Q2

You should study QML
Because it is more powerful 

than classical ML, right?

Because it is powerful, right?
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