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Hype behind QML

Number of publications in “Quantum Machine Learning”
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Why?

Range of possible applications:

|1⟩

|ψ⟩ = α |0⟩ + β |1⟩

|0⟩

Quantum Chemistry 

Drug Discovery 

Condensed matter

Self driving cars

Optimize quantum  

computers

Logistic problems  

like vehicle routing

Portfolio optimization

New algorithms 

Understand older ones
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Quantum Computers

Quantum computers are physical systems capable of implementing quantum computations.
|1⟩

|ψ⟩ = α |0⟩ + β |1⟩

|0⟩|ψ⟩ =
|0⟩ + |1⟩

2

|0⟩

|1⟩

|ψ⟩ = |0⟩ |ψ⟩ = |1⟩

Qubit

dim ℋ = 2n Exponential! 

dim ℋ = 2

Multiple qubits ℋ = ℋ0 ⊗ ℋ1 ⊗ ⋯ ⊗ ℋn

• Superconducting 
circuits 

• Ion Traps 

• Photonics

O
X

H

Y
Quantum 

circuit model



/ 205

Quantum Advantage 

Grover’s search

Shor’s Factoring

HHL for Linear Equations (aka matrix inversion)

Hidden subgroup problem: Discrete Logarithm, Order Finding, …

O( N)Quantum:

Classical: O(N)

N = p × q exp(O((log N)1/3(log log N)2/3)Quantum:

Classical: O((log N)3) Exponential!

Target Polynomial!

Quantum Fourier Transform 

Ax = b O(log N) *Quantum:

Classical: O(N)
Exponential! 
*given constraints on A
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NISQ

Noisy Intermediate Scale Quantum (NISQ) devices:  

• 10-102 qubits 

• Gate Errors 

• Low connectivity 

IBM Quantum Experience : ibmqx2-yorktown quantum processor

IBMQ’s Roadmap: 

1121 (physical) 

qubits by 2023
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A primer on classical AI

Supervised Learning

Perceptrons, 

SVM,  

NN, 

…

Unsupervised Learning

PCA, 

k-means, 

…

Reinforcement Learning

Environment

Reward

Action

…but Quantum.
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The four-fold way

CC 
Classical for classical 

CQ 
Classical for Quantum 

QC 
Quantum for classical 

QQ 
Quantum for Quantum 

Quantum-Enhanced  

Machine Learning

Quantum-Applied  

Machine Learning
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ML for Quantum Physics

Phase transitions

Unsupervised: PCA, Clustering 

Supervised: NN, CNN

Representing quantum states

Boltzmann Machines

Neural Network Quantum States (NQS): 

ψ = ∑
{h}

exp(∑
j

ajσz
j + ∑ jbjhj + ∑

ij

Wijhiσz
j )

Carleo, G., et al. Machine learning and the physical sciences. Reviews of Modern Physics 91.4 (2019): 045002
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ML for Quantum Control

Quantum State Tomography (QST)

Reconstruct density matrix  from measurements 

Exponential in number of qubits 

ρ Recurrent Neural Networks optimizing gates 

RBMs using parametrization of the state

Quantum Error Correction (QEC)

Find  strategies to protect quantum computation  

against noise and errors

Reinforcement learning for  and   

BMs learning  

S e
pλ(S, e)

T

H S

H

H

T

Quantum Algorithms

Develop new quantum algorithms for specialized 

tasks

Reinforcement learning for new experiments 

Optimization techniques

Carleo, G., et al. Machine learning and the physical sciences. Reviews of Modern Physics 91.4 (2019): 045002
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IBM Quantum Challenge

∥U − V∥2 < ε, ε = 0.01 ∥A∥2 = max|ψ⟩∥A |ψ⟩∥2

 Given unitary , find an approximation , such that U V

Using only single qubit gates and CNOT, minimizing the cost = 10ncx + nu3

?
Best cost 

46

U =

a high-level gate sequence defined for an idealized hardware. Various techniques have been employed in these
works such as temporal planning (e.g. [11]).Machine-learning techniques have also been used to decompose
small scale unitaries into one and two-body gates [17, 18]. Although ourmethod can be used in this way to
optimally compile a knownunitary or gate sequence, ourmain goal is to discover novel algorithms via task-
oriented programming.

Other automated algorithm-discovery approaches have been employed in the literature. Gepp and Stocks
[9] reviewmuch of the early work to evolve quantumalgorithms using genetic programming such as [10] (for
more recent work see for example [19]). In these approaches the gate set is typically discrete. An alternative
approach is to define an ansatz or template for the quantum circuit composed of gates that depend on
continuous parameters. The circuit is then trained to perform a given task by tuning these parameters [6, 7]. Our
approach is distinct fromprevious works in that we do not start with an ansatz or template for the quantum
circuit; nor dowe restrict to a discrete gate set as is usually done in algorithms based on genetic programming. In
this sense our approach combines desirable aspects of the two types of approaches in the literature.

We apply our approach to a ubiquitous task: computing the overlap between two quantum states. This
computation yields Z G� §∣ ∣ ∣2 for two pure states Z§∣ and G§∣ , andmore generally gives ST( )Tr for two (possibly
mixed) states ρ andσ. Furthermore, when specialized to the case ρ=σ, it computes the purity S( )Tr 2 of a given
state ρ.

There is awell-known algorithm for this task called the Swap Test [22, 23]. In quantumoptics the SwapTest
has a simple physical implementation [24–26]. However, for gate-based quantum computers (e.g. IBM’s,
Google’s, andRigetti’s superconducting quantum computers and IonQ’s trapped-ion quantum computer), the
optimal implementation of the SwapTest is not obvious, and for single-qubit states involves 14 and 34 gates for
IBM’sfive-qubit andRigetti’s 19-qubit quantum computer respectively, seefigure 2. Larger gate count for
Rigetti’s computer ismainly due to its lower connectivity. For example, the SwapTest was experimentally
implemented on afive-qubit computer based on trapped ions [27] to quantify entanglement, with an algorithm
employing 7 two-qubit gates and 11 one-qubit gates. Figures 2(B) and (C) respectively showdecompositions of
the SwapTest for IBM’s andRigetti’s quantum computers [28, 29]. This highlights the non-trivial nature of
implementing the SwapTest algorithm.

Here, ourmachine-learning approachfinds algorithmswith a shorter depth than the SwapTest for
computing the overlap.We do this by initially specializing the training data to one- and two-qubit states and
thenmanually generalizing the resulting algorithms to input states of arbitrary size.Wefirst consider the same
‘quantum resources’ as the SwapTest (access to a qubit ancilla andmeasurement on the ancilla), and our
approach reduces the gate count to 4 controlled-NOTs (CNOTs) and 4 one-qubit gates.We call this our Ancilla-
based algorithm (ABA). Thenwe allow for the additional resource ofmeasuring all of the qubits, which gives an
even shorter depth algorithm that essentially corresponds to a Bell-basismeasurement with classical post-
processing.We call this our Bell-basis algorithm (BBA). This algorithmhas a constant depth of two gates, while
the classical post-processing scales linearly in the number of qubits of the input states. In that regard, our
machine-learning approach independently discovered the algorithmofGarcia-Escartin andChamorro-Posada
for computing state overlap [24].We alsofind short-depth algorithms for the specific hardware connectivity and

Figure 1.Machine-learning approach to discovering and optimizing quantum algorithms.We optimize an algorithm for a given set of
resources, which includes input resources (ancilla and data qubits) andmeasurement resources (i.e. which qubits can bemeasured).
The algorithm is then determined by the quantumgate sequence and the classical post-processing of themeasurement results. To find
the algorithm that computes the function x→f (x), weminimize a cost function that quantifies the discrepancy between the desired
output f (x( i)) and the actual output y( i) for a set of training data inputs {x( i) }. If the training data are sufficiently general, the algorithm
thatminimizes the cost should be a general algorithm that computes f (x) for any input x.

2

New J. Phys. 20 (2018) 113022 LCincio et al

45!
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IBM Quantum Challenge

a high-level gate sequence defined for an idealized hardware. Various techniques have been employed in these
works such as temporal planning (e.g. [11]).Machine-learning techniques have also been used to decompose
small scale unitaries into one and two-body gates [17, 18]. Although ourmethod can be used in this way to
optimally compile a knownunitary or gate sequence, ourmain goal is to discover novel algorithms via task-
oriented programming.

Other automated algorithm-discovery approaches have been employed in the literature. Gepp and Stocks
[9] reviewmuch of the early work to evolve quantumalgorithms using genetic programming such as [10] (for
more recent work see for example [19]). In these approaches the gate set is typically discrete. An alternative
approach is to define an ansatz or template for the quantum circuit composed of gates that depend on
continuous parameters. The circuit is then trained to perform a given task by tuning these parameters [6, 7]. Our
approach is distinct fromprevious works in that we do not start with an ansatz or template for the quantum
circuit; nor dowe restrict to a discrete gate set as is usually done in algorithms based on genetic programming. In
this sense our approach combines desirable aspects of the two types of approaches in the literature.

We apply our approach to a ubiquitous task: computing the overlap between two quantum states. This
computation yields Z G� §∣ ∣ ∣2 for two pure states Z§∣ and G§∣ , andmore generally gives ST( )Tr for two (possibly
mixed) states ρ andσ. Furthermore, when specialized to the case ρ=σ, it computes the purity S( )Tr 2 of a given
state ρ.

There is awell-known algorithm for this task called the Swap Test [22, 23]. In quantumoptics the SwapTest
has a simple physical implementation [24–26]. However, for gate-based quantum computers (e.g. IBM’s,
Google’s, andRigetti’s superconducting quantum computers and IonQ’s trapped-ion quantum computer), the
optimal implementation of the SwapTest is not obvious, and for single-qubit states involves 14 and 34 gates for
IBM’sfive-qubit andRigetti’s 19-qubit quantum computer respectively, seefigure 2. Larger gate count for
Rigetti’s computer ismainly due to its lower connectivity. For example, the SwapTest was experimentally
implemented on afive-qubit computer based on trapped ions [27] to quantify entanglement, with an algorithm
employing 7 two-qubit gates and 11 one-qubit gates. Figures 2(B) and (C) respectively showdecompositions of
the SwapTest for IBM’s andRigetti’s quantum computers [28, 29]. This highlights the non-trivial nature of
implementing the SwapTest algorithm.

Here, ourmachine-learning approachfinds algorithmswith a shorter depth than the SwapTest for
computing the overlap.We do this by initially specializing the training data to one- and two-qubit states and
thenmanually generalizing the resulting algorithms to input states of arbitrary size.Wefirst consider the same
‘quantum resources’ as the SwapTest (access to a qubit ancilla andmeasurement on the ancilla), and our
approach reduces the gate count to 4 controlled-NOTs (CNOTs) and 4 one-qubit gates.We call this our Ancilla-
based algorithm (ABA). Thenwe allow for the additional resource ofmeasuring all of the qubits, which gives an
even shorter depth algorithm that essentially corresponds to a Bell-basismeasurement with classical post-
processing.We call this our Bell-basis algorithm (BBA). This algorithmhas a constant depth of two gates, while
the classical post-processing scales linearly in the number of qubits of the input states. In that regard, our
machine-learning approach independently discovered the algorithmofGarcia-Escartin andChamorro-Posada
for computing state overlap [24].We alsofind short-depth algorithms for the specific hardware connectivity and

Figure 1.Machine-learning approach to discovering and optimizing quantum algorithms.We optimize an algorithm for a given set of
resources, which includes input resources (ancilla and data qubits) andmeasurement resources (i.e. which qubits can bemeasured).
The algorithm is then determined by the quantumgate sequence and the classical post-processing of themeasurement results. To find
the algorithm that computes the function x→f (x), weminimize a cost function that quantifies the discrepancy between the desired
output f (x( i)) and the actual output y( i) for a set of training data inputs {x( i) }. If the training data are sufficiently general, the algorithm
thatminimizes the cost should be a general algorithm that computes f (x) for any input x.

2

New J. Phys. 20 (2018) 113022 LCincio et al

Using a Machine Learning approach someone got 45!

⃗c , ⃗k

Choose gate sequence  

and measurements

Optimize parameters

⃗θ

Accept/reject

⃗k , ⃗c

Cincio, L., et al. Learning the quantum algorithm for state overlap, New J. Phys 20 113022
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Quantum Linear Algebra

Linear regression problems

y = f(x)

ỹ = ⃗w ⋅ ⃗x + b

Unknown function

Linear approximation

ℒ( ⃗w , b) =
M

∑
i=1

(ỹi − yi)2Define a loss function

ℒ( ⃗θ ) = (X ⃗θ − ⃗y )2 ⃗θ =

w1
⋮
wd

b

X =
x(1)

1 ⋯ x(1)
d 1

⋮ ⋱ ⋮ ⋮
x(M)

1 ⋯ x(M)
d 1

⃗y =
y1
⋮
yM

∂ℒ( ⃗θ )

∂ ⃗θ
= 0Optimization

Matrix form

⃗θ = (X†X)−1X† ⃗y HHL algorithm for  

matrix inversion!
Biamonte, J., Wittek, P., Pancotti, N. et al. Quantum machine learning. Nature 549, 195–202 (2017).
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Quantum Linear Algebra

Nearest neighbors 
⃗x ∈ ℝN → |x⟩ =

n

∑
j=0

xj

| ⃗x |
| j⟩

⃗x

n = log N

Amplitude encoding 
(with normalization)⃗c =

1
M

M

∑
i=1

⃗v i → |c⟩ =
n

∑
j=0

cj

| ⃗c |
| j⟩

|ψ⟩ =
1

2
( |0, x⟩ + |1, c⟩) |ϕ⟩ =

1

| ⃗x |2 + | ⃗c |2
( | ⃗x | |0⟩ − | ⃗c | |1⟩)

| ⃗x |2 + | ⃗c |2 ⟨ψ |ϕ⟩
2

= | ⃗x − ⃗c |2

Quantum O(log MN)
O(polyMN)Classical

SWAP test

Fast Scalar product!

QA based on Fast Linear Algebra: 

Quantum PCA 

Quantum SVM  

Quantum clustering 

Quantum data fitting 

…

Drawbacks: 

Not suited for NISQ 

Requires high resources 

Strong limits of applicability

Biamonte, J., Wittek, P., Pancotti, N. et al. Quantum machine learning. Nature 549, 195–202 (2017).

⃗c
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Dequantization

Quantum algorithms giving birth to quantum-inspired classical algorithms

|x⟩ =
n

∑
j=0

xj

| ⃗x |
| j⟩⃗x ∈ ℝN

n = log N
Requires only

resources

𝒟xi
=

x2
i

∥ ⃗x ∥2

Replaced by a classical  

sampling procedure 
(if conditions are met)

Tang, E. A quantum-inspired Classical Algorithm for Recommendation Systems,  

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019)

Quantum  

RAM

…polynomial speedups still matters.

Quantum PCA 

Quantum SVM  

Quantum Supervised  Clustering 

Quantum Recommendation system 

…

Classical random procedure doing as well 

up to polynomial overhead

Dequantization

⃗x ∈ ℝN

Classical Data 

Structure 
(“Sample and Query access”)
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Hybrid models

In the NISQ era, a  promising way is to use hybrid quantum-classical learning models

Uϕ(x) Uθ

Classical post processing

Cost function ℒ(θ)

Input  x

Encoding  

quantum circuit

Parametrized 

quantum circuit Measurements

Quantum ClassicalQuantum/Classical

θ ← θ − η∇θℒ
Benedeti, M., et al. Parametrized quantum circuits as learning models. Quantum Sci. Technol. 5 019601 (2019)
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Kernel methods

x

(x, y)

y

x

z (x, y, x2 + y2)

Feature map

linearly non separable linearly separable

Uϕ(x)

Uϕ(x′ )

H H

|0⟩⊗n

|0⟩⊗n

|0⟩

SWAP

P(0) =
1
2

+
1
2

⟨ϕ(x′ ) |ϕ(x)⟩
2

=
1
2

+
1
2

⟨0 |U†
ϕ(x)Uϕ(x) |0⟩

2

Quantum Kernel function

Quantum advantage 

kernels which are difficult to simulate classically

𝒦(x, x′ )
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Variational Quantum Models

Uϕ(x) Uθ

Classification performed by the parametrized quantum circuit

U(θ0)

U(θ2)

U(θ1)

U(θ3)

U(θ4)

U(θ6)

U(θ5)

U(θ7)

Variational  

Ansatz

Layer 1 Layer 2

U(θ) =

{⟨Mk⟩x,θ}kMeasurement outcomes

Evaluate cost function ℒ(⟨Mk⟩x,θ)

Update variational parameters 

Until condition is met, repeat:

θ ← θ − η∇θℒ

Note: Gradients by numerical methods (SPSA),  

   Parameter Shift rules, “Barren Plateaus”

Uθ U†
θ

|0⟩⊗n}
|ψ⟩

| ψ̃⟩

Quantum  

Variational 

Autoencoder
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Here in Pavia

Quantum model of neurons
2

w0i0

w1i1

...
...

...
...

wN�1iN�1

P
ijwj Output

Activation
function

Inputs Weights

FIG. 1: Scheme of a classical perceptron model.
The artificial neuron evaluates a weighted sum between
the input vector, ~i, and the weight vector, ~w, followed
by an activation function, which determines the actual

output of the neuron.

neuron model is a crucial step in view of fully exploiting
the great potential allowed from automatic di↵erentiation
such as gradient descent. These techniques are commonly
employed, e.g., in supervised and unsupervised learning
procedures, and would be impossible to be applied to the
oversimplified McCulloch-Pitts neuron model.

II. CONTINUOUSLY VALUED QUANTUM

NEURON MODEL

A. The algorithm

Let us consider a perceptron model with real valued in-
put and weight vectors, which are respectively indicated
as ~i and ~w, such that ij , wj 2 R. A schematic represen-
tation of the classical perceptron is reported in Fig. 1.
Similarly, we define a model of a quantum neuron ca-

pable of accepting continuously valued input and weight
vectors, by extending a previous proposal for the quan-
tum computing model of an artificial neuron only accept-
ing binary valued input data [9]. In order to encode data
on a quantum state, we make use of a phase encoding.
Given an input ✓ = (✓0, . . . , ✓N�1) with ✓i 2 [0,⇡], which
consists of the classical data to be analyzed, we consider
the vector:

~i = (ei✓0 , ei✓2 , · · · , ei✓N�1) , (1)

which we will be referring to as the input vector in the
following. With this input vector we define the input
quantum state of n = log2 N qubits:

| ii =
1

2n/2

2n�1X

k=0

ik |ki , (2)

where the states |ki denote the computational basis
states of n qubits ordered by increasing binary repre-

sentation, {|00 . . . 0i , |00 . . . 1i , · · · , |11 . . . 1i}. Since we
are dealing with an artificial neuron, we have to properly
encode another vector, which represents the weights in
the form � = (�0, . . . ,�N�1) with �i 2 [0,⇡], i.e. the
corresponding vector:

~w = (ei�0 , e
i�2 , · · · , ei�N�1) (3)

which in turn defines the weight quantum state:

| wi =
1

2n/2

2n�1X

k=0

wk |ki . (4)

Notice that (2) and (4) have the same structure, i.e.
they consist of an equally weighted superposition of all
the computational basis states, although with varying
phases. By means of such encoding scheme, we can
fully exploit the exponentially large dimension of the n

qubits Hilbert space, i.e., by only using n qubits it is evi-
dently possible to encode and analyze data of dimension
N = 2n. Due to global phase invariance, the number
of actual independent phases is 2n � 1, which does not
spoil the overall e�ciency of the algorithm, as it will be
shown. We also notice that the class of states represented
as 1

2n/2

P
i e

i↵i |ii, as (2) and (4) are known as locally
maximally entanglable (LME) states, as introduced in
Ref. [29].
Having defined the input and weight quantum states,

their similarity is estimated by considering the inner
product

h w| ii :=
1

2n

2n�1X

k,j=0

ikw
⇤
j hj|ki

=
1

2n
~i · ~w⇤ (5)

=
1

2n

⇣
e
i(✓0��0) + · · ·+ e

i(✓2n�1��2n�1)
⌘

,

which corresponds to evaluating the scalar product be-
tween the input vector in Eq. (1) and the conjugated of
the weight vector in Eq. (3), ~w⇤, similarly to the classi-
cal perceptron algorithm. Since probabilities in quantum
mechanics are represented by the squared modulus of
wavefunction amplitudes, we consider | h w| ii |2, which
is explicitly given as (see App. A):

| h w| ii |2 =
1

2n
+

1

22n�1

2n�1X

i<j

cos((✓j � �j)� (✓i � �i)) .

(6)
It is easily checked that | h w| ii |2 = 1 for ✓i = �i 8i,
since the two states would coincide in such case.

Equation (6) represents the activation function imple-
mented by the proposed quantum neuron. Even if it does
not remind any of the activation functions conventionally
used in classical machine learning techniques, such as the
Sigmoid or ReLu functions [30], its nonlinearity su�ces
to accomplish classification tasks, as we will discuss in
the following sections.

i0

i1

iN−1

⋮

⋮

Input Weights

Activation 

function

Output

Weighted 

sum
Ui Uw

⟨ψi |ψw⟩
2

|ψi⟩ =
1

2n

N−1

∑
j=0

eiαj | j⟩LME states
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Take Home Message

Quantum Machine Learning, as well as Quantum Computing, promise to 
greatly enhance computational tasks.

Quantum-enhanced machine learning

Faster linear algebra, 

Parametrized quantum circuits, 

Creation of quantum-inspired algorithms, …

Quantum-applied machine learning
Quantum tomography, 

Quantum simulation, 

Quantum control, … 

However

Yet, no real actual real speed up 

Much still do be done
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Extra 1\ Dequantization

Quantum algorithms giving birth to quantum-inspired classical algorithms

Recommendation systems

T ∈ ℝn×m T =
T(1)

1 T(2)
1 ⋯ T(m)

1
⋮ ⋱ ⋮

T(1)
n T(2)

n ⋯ T(m)
n

User

Preferences

O(poly(k) polylog(mn))

Quantum Recommendation System

|x⟩ =
n

∑
j=0

xj

| ⃗x |
| j⟩⃗x ∈ ℝN

n = log N
Requires only

resources

𝒟xi
=

x2
i

∥ ⃗x ∥2

Replaced by a classical  

sampling procedure 
(if conditions are met)

O(poly(k) polylog(mn))

Dequantization! Extended to: 

Supervised clustering 

Quantum PCA 

…

Tang, E. A quantum-inspired Classical Algorithm for Recommendation Systems,  

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019)

Classical input data …polynomial speedups still matters.
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Extra 2\ GPT-3

Quantum systems produce atypical patterns that classical systems are 
thought not to produce efficiently, so it is reasonable to postulate that 
quantum computers may outperform classical computers on machine 
learning tasks.  

The field of quantum machine learning explores how to devise and 
implement quantum software that could enable machine learning that is 
faster than that of classical computers.  

$4.6 Milion

GPT-3 is a model for Natural Language Processing (NLP) capable of interpreting and forming 

sentences

Training cost

175B
Parameters Training time

dim ℋ = 2n175 ⋅ 4 ⋅ 109 = 700GB only n = 43 qubits!

Key facts:

355

355y
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Extra3\ Quantum circuit model

Each line represent a qubit

A box represent a 

unitary quantum gate

|ψ⟩ ∈ ℂ2

U : ℂ2 → ℂ2 Quantum gate acting on all qubits in the circuit

Measurement in the 

computational basis

{ |0⟩, |1⟩}

H|0⟩ |ψ⟩ =
1

2
( |0⟩ + |1⟩)

Superposition

1

2 [1 1
1 −1] [1

0] =
1

2 [1
1]H |0⟩ =

Entanglement (Bell state)

H|0⟩
|0⟩

|ψ⟩ =
1

2
( |00⟩ + |11⟩)

|00⟩ → |00⟩
|01⟩ → |01⟩

|10⟩ → |11⟩
|11⟩ → |10⟩

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

O
X

H

Y
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Study the theoretical aspects of quantum machine learning, and results are framed in the 
language of Computational Learning Theory (COLT).

Extra 4\ Quantum Learning Theory

t Learner 𝒜
c : {0,1}n → {0,1}Concept

Concept class 𝒞 = {c |c : {0,1}n → {0,1}}

recognize letter “t”

recognize all letters

Probably Approximately Correct (PAC) Learning:

Learner 𝒜 P(c, D)Oracle (x, c(x))Example

Prx∼D[h(x) ≠ c(x)] < ϵ1 − δwith probability

Quantum PAC ∑
x

D(x) |x, c(x)⟩

Disjunctive Normal Forms (DNF) are 
efficientlyQuantum PAC-learnable faster than 
classically

Concept classes built upon factorization, are 
learnable exponentially faster with quantum 
resources (Shor)

Results:  

Arunachalam, S. & de Wolf, R. A survey on Quantum Learning Theory, arXiv:1701.06806 (2017)


