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Quantum computing
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Classical perceptrons
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Classical perceptrons
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Weights (and bias) vector w

y = f(i ⋅ w)
Artificial feedforward 

neural network
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PQCs as QNNs

Parameterized Quantum Circuits (PQC) are often referred to as Quantum Neural Networks (QNN)

ρ(x)
Input state

U(θ1) W1 U(θ2) W2 U(θL) WL. . .

U(θ) =
1

∏
l=L

U(θi) Wi

 Variational gates possibly 

dependent also on input, i.e.  

U(θi) :
U(θ; x)

 Un-parameterized entangling operationsWi :

⟨O⟩θ

Measure  

Observable

Loss/Cost function

. . .
Update params 
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Various QNN/QML models [1]

Classical Neural Networks

θ
Input layer Hidden layers

x

Quantum Neural Networks

Activation function

Ancilla

Encoding 

qubits|0⟩⊗n

x, x′ 

|0⟩⊗n

K(x, x′ )

CL PL CL PL FCL

ρin

ρout

. . .|0⟩⊗n

x

. . .

. . .

. . .

Quantum Kernel Methods

Quantum Perceptrons Quantum Convolutional Neural Networks

discard}

|0⟩⊗n

|0⟩⊗n

ρin

ρout

l = 1

l = L

l = 2

discard}

⋮

Quantum Dissipative Neural Networks

[1] S. Mangini et al., “Quantum computing models for artificial neural networks”, EPL (Europhysics Letters) 2, 1 (2021).
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McCulloch-Pitts Quantum Neuron [2]

i = (i0, i1, …, in−1)

w = (w0, w1, …, wn−1)

ij, wj ∈ {−1,1}

Discrete inputs and weights

⟨ψi |ψw⟩ =
2N−1

∑
j,k=0

ijwk⟨j |k⟩ =
2N−1

∑
j=0

ijwj

So that…

[2] F. Tacchino et al., “An artificial neuron implemented on an actual quantum processor”, npj Quantum Information 5, 26 (2019).

|ψi⟩ =
1

2N

2N−1

∑
j=0

ij | j⟩

|ψw⟩ =
1

2N

2N−1

∑
j=0

wj | j⟩

Encode the -bit long input and weight 

vector in the amplitudes  of a 

balanced superposition of the 

computational basis states of  

 qubits

n
±1

N = log2 n

Real Equally Weighted (REW) states

…inner product! Now the activation function!

i0

i1

in−1

n−1

∑
j=0

ijwj

w0

w1

wn−1
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Compute-Uncompute method 

|0⟩⊗N U(i) U(w)†
U(i) |0⟩⊗N = |ψi⟩

Be  the variational unitary preparing the  

input and weight quantum states 

U( ⋅ )

U(w) |0⟩⊗N = |ψw⟩

⟨ψw| |ψi⟩

= ⟨ψw |ψi⟩

then

|Φ⟩ = U(w)†U(i) |0⟩⊗N

⟨0 |Φ⟩ = ⊗N⟨0 |U(w)†U(i) |0⟩⊗N

its projection on the  state|0⟩⊗N

# of ‘000..0’ measurements = |⟨ψw |ψi⟩ |2

Non-linear activation function induced by 

measurement!
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Compute-Uncompute with a twist

|0⟩⊗N U(i) U(w)†

In this way the desired inner product is loaded on 

the state of the ancilla qubit. Easier to transfer if 

thinking of a coherent feedforward neural network. 
|0⟩

# of ‘1’ measurements = |⟨ψw |ψi⟩ |2

X

X

X

X

X

X

Adding: 

• ancilla qubit 

• layer of  

• multi controlled NOT 

X

CNX
(or control on )|0⟩
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Pattern Recognition

i0 i1

i2 i3

white if  

black if 

ij, wj = + 1
ij, wj = − 1i =

i0
i1
⋮

i2N−1

w =

w0
w1
⋮

w2N−1

⃗i = (i0, i1, i2, i3)

i =
(1, − 1,1, − 1)

w =
(1, − 1,1, − 1)

⟨ψw |ψi⟩ = i ⋅ w = 1 Perfect activation

N = 2

i =
(1, − 1,1, − 1)

w =
(−1,1,1, − 1)

No activation⟨ψw |ψi⟩ = i ⋅ w = 0
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A Continuous Quantum Neuron [3]

+1

−1

+ |ψ⟩

− |ψ⟩

Discrete

θj, ϕj ∈ [0,π]
θ = (θ0, θ1, …, θn−1)
ϕ = (ϕ0, ϕ1, …, ϕn−1)

input

weights
(not  due to periodicity)2π

+1 = ei2π

−1 = eiπ

Continuous

eiθ |ψ⟩

Phase Encoding  
Encode data on the phases of  

the quantum state

|ψθ⟩ =
1

2N

2N−1

∑
j=0

eiθj | j⟩

|ψϕ⟩ =
1

2N

2N−1

∑
j=0

eiϕj | j⟩

|⟨ψϕ |ψθ⟩ |2 =
2N−1

∑
j

ei(θj−ϕj)
2

= … =

=
1
2N

+
1

22N−1

2N−1

∑
i<j

cos((θj − ϕj) − (θi − ϕi))

[3] S. Mangini et al., “Quantum computing model of an artificial neuron with continuously valued input data”, Mach. Learn.: Sci. Technol. 1 045008 (2020).
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Checkerboard classification [3]

255 170

85 0
i = (255,170,85,0)

ij ∈ [0,255]

Grayscale images

Normalization i →
π/2
255
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[3] S. Mangini et al., “Quantum computing model of an artificial neuron with continuously valued input data”, Mach. Learn.: Sci. Technol. 1 045008 (2020).
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|010⟩ → i010 |010⟩
|110⟩ → i110 |110⟩

Brute-force approach 
both for discrete and continuous

Requires  operationsO(n)

X X

Z

16

Problem: efficient implementation

Hypergraph states 
only discrete

Nodes

Edge

|ψi⟩ =
1

2N

2N−1

∑
j=0

ij | j⟩

REW state

Requires still  operations 

but lower multi-qubit operations 

(at most one -controlled gate)

O(n)

N

State preparation is inefficient in the number of qubits i = (i0, i1, …, in−1) N = log n
# of qubits

R( )θ [1 0
0 eiθ]
R( ) =θ
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In the following, we focus on creating a variational implementation of , assuming an efficient 

procedure for loading classical data on the quantum state is available (i.e.  is given). 

Uw

Ui

|0⟩⊗N U(i) U(w)†

|0⟩

X

X

X

X

X

X

U(w) |0⟩⊗N = |ψw⟩

Solution: make it variational! [4]

[4] F. Tacchino, S. Mangini et al., "Variational Learning for Quantum Artificial Neural Networks”, IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021)
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Solution: make it variational! [4]

In the following, we focus on creating a variational implementation of , assuming an efficient 

procedure for loading classical data on the quantum state is available (i.e.  is given). 

Uw

Ui

U(w) |0⟩⊗N = |ψw⟩

|0⟩⊗N U(i)

|0⟩

X

X

X

X

X

X

Uw

Uw = X⊗NU(w)

Uw |ψw⟩ = X⊗NU(w) U(w)† |0⟩⊗N = |1⟩⊗N

V(θ)

Variational ansatzapproximation

V(θ*) ≈ Uw

  optimal angles θ*
Optimization problem:

θ* = arg minθ
Note: optimal values are specific to a w

[4] F. Tacchino, S. Mangini et al., "Variational Learning for Quantum Artificial Neural Networks”, IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-10 (2021)
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|ψw⟩

V(θ)

19

Global and Local optimization

Global strategy Local strategy

|ψw⟩

. . .

. . .

j = 1
j > 1

. . .

R(θ) ℰ

Entangling layer: all-to-all or nearest neighbors

Single qubits rotations (around ) σy

V1(θ1)

repeated 

-timesn1

V2(θ2)

repeated 

-timesn2

repeated 

-timesn

disentangle qubit, and send it as 

close as possible to |1⟩
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Ansatz: technicalities

R(θ)

Variational gates

R(θ) =
4

⨂
q=1

exp(iθqσ
(q)
y /2)

for each layer

pauli matrix acting on qubit-σ(q)
y : q

Entangling gates

All to all (a2a)

= ℰa2a = ∏
q

4

∏
q′ =q+1

CNOTqq′ 

Nearest neighbors (nn)

= ℰnn = ∏
q

CNOTq,q+1
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Comparison with exact method Engineeringuantum
Transactions onIEEE

Tacchino et al.: VARIATIONAL LEARNING FOR QUANTUM ARTIFICIAL NEURAL NETWORKS

FIG. 2. Comparison of output activation pout = |〈ψw|ψi〉|2 among the exact (hypergraph states routine), global (n = 3), and local (n′ = 2) approximate
implementations of Uw . The inset shows the general mapping of any 16-dimensional binary vector !b onto the 4 × 4 binary image (b) and the
cross-shaped !w used in this example (c). The selected inputs on which the approximations are tested were chosen to cover all the possible cases for
pout and are labeled with their corresponding integer ki (see the main text).

We implemented both versions of the variational training
in Qiskit [42], combining exact simulation of the quantum
circuits required to evaluate the cost function with classical
Nelder–Mead [43] andCobyla [44] optimizers from the scipy
Python library. We !nd that the values n = 3 and n′ = 2
allow the routine to reach total !delities to the target state
|1〉⊗N well above 99.99%. As shown in Fig. 2, this, in turn,
guarantees a correct reproduction of the exact activation
probabilities of the quantum arti!cial neuron with a quan-
tum circuit depth of 19 (29) for the global (qubit-by-qubit)
strategy, as compared to the total depth equal to 49 for the
exact implementation of Uw using hypergraph states. This
counting does not include the gate operations required to
prepare the input state, i.e., it only evidences the different
realizations of the Uw implementation assuming that each
|ψi〉 is provided already in the form of a wavefunction. More-
over, the multicontrolled CPZ operations appearing in the
exact version were decomposed into single-qubit rotations
and cnots without the use of additional working qubits.
Notice that these conditions are the ones usually met in real
near-term superconducting hardware endowed with a !xed
set of universal operations.

D. STRUCTURE OF THE ANSATZ AND SCALING
PROPERTIES
In many practical applications, the implementation of the
entangling block E could prove technically challenging, in
particular for near-term quantum devices based, e.g., on su-
perconducting wiring technology, for which the available
connectivity between qubits is limited. For this reason, it
is useful to consider a more hardware-friendly entangling
scheme, which we refer to as nearest neighbors. In this case,

each qubit is entangled only with at most two other qubits,
essentially assuming the topology of a linear chain

Enn =
3∏

q=1

cnotq,q+1. (20)

This scheme may require even fewer two-qubit gates to be
implemented with respect to the all-to-all scheme presented
above. Moreover, this entangling unitary !ts perfectly well
on those quantum processors consisting of linear chains of
qubits or heavy hexagonal layouts.
We implemented both global and local variational learning

procedures with nearest neighbor entanglers in Qiskit [42],
using exact simulation of the quantum circuits with classical
optimizers to drive the learning procedure. In the follow-
ing, we report an extensive analysis of the performances
and a comparison with the all-to-all strategy introduced in
Section III-C. All the simulations are performed by assuming
the same cross-shaped target weight vector !w depicted in
Fig. 2.
In Fig. 3, we show an example of the typical optimization

procedure for three different choices of the ansatz depth (i.e.,
number of entangling cycles) n = 1, 2, 3, assuming a global
cost function. Here, we !nd that n = 3 allows the routine to
reach a !delity F (!θ ) to the target state |1〉⊗N above 99%.
In the local qubit-by-qubit variational scheme, we can

actually introduce an additional degree of freedom by al-
lowing the number of cycles per qubit, n′, to vary between
successive layers corresponding to the different stages of the
optimization procedure. For example, we may want to use a
deeper ansatz for the !rst unitary acting on all the qubits and
shallower ones for smaller subsystems. We, thus, introduce a

3101110 VOLUME 2, 2021
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Optimisation of Global with nn

Tacchino et al.: VARIATIONAL LEARNING FOR QUANTUM ARTIFICIAL NEURAL NETWORKS Engineeringuantum
Transactions onIEEE

FIG. 3. Optimization of the global unitary with nearest neighbor
entanglement for three different structures differing in the numbers of
entangling blocks n. The cost function is |〈11 . . . 1|V (!θ)|ψw〉|2 = 1 − F (!θ)
[see (11)]. Only for n = 3, the learning model has enough expressibility
to reach a good final fidelity. The classical optimizer used in this case
was COBYLA [44].

FIG. 4. Final fidelity obtained for the local variational training and using
both the all-to-all entangler E (17) and nearest neighbor Enn (20). On top
of each rectangle, in light blue, we reported the depth of the
corresponding quantum circuit to implement that given structure with
that particular entangling scheme. For clarity, a structure “211”
corresponds to a variational model having two repetitions (n′

1 = 2) for
the first layer acting on all four qubits, and one cycle (n′

1 = n′
2 = 1) for

the remaining two layers acting on three and two qubits, respectively.
Each bar was obtained by executing the optimization process ten times
and then evaluating the means and standard deviations (shown as error
bars). The optimization procedure was performed using COBYLA [44].

different n′
j for eachVj(!θ j ) in (18), andwe name structure the

string “n1n2n3.” The latter denotes a learning model consist-
ing of three optimization layers: V1(!θ1) with n1 entangling
cycles, V2(!θ2) with n2 cycles, and V3(!θ3) with n3 cycles. In
the last step of the local optimization procedure, i.e., when
a single qubit is involved, we always assume a single three-
parameter rotation [see (19)]. A similar notation will be also
applied in the following when scaling up to N > 4 qubits.

The effectiveness of different structures is explored in
Fig. 4. We see that, while the all-to-all entangling scheme
typically performs better in comparison to the nearest neigh-
bor one, this increase in performance comes at the cost of

FIG. 5. Final fidelities for different structures of the local variational
learning model with a nearest neighbor entangler, for the case of N = 5
qubits. Similarly to the case with N = 4 qubits portrayed in Fig. 4, the
most depth-efficient structure is the one consisting of constantly
decreasing number of cycles.

deeper circuits. Moreover, the stepwise decreasing structure
“321” for the nearest neighbor entangler proves to be an
effective solution to problem, achieving a good !nal accuracy
(above 99%) with a low circuit depth. This trend is also
con!rmed for the higher dimensional case of N = 5 qubits,
which we report in Fig. 5. Here, the dimension of the un-
derlying pattern recognition task is increased by extending
the original 16-bit weight vector !w with extra 0 s in front of
the binary representation kw. In fact, it can easily be seen
that, assuming directly nearest neighbor entangling blocks,
the decreasing structure “4321” gives the best performance–
depth tradeoff. Such an empirical fact, namely that the most
ef!cient structure is typically the one consisting of decreas-
ing depths, can be heuristically interpreted by recalling again
that, in general, the optimization of a function depending
on the state of a large number of qubits is a hard training
problem [14]. Although we employ local cost functions, to
complete our particular task, each variational layer needs to
successfully disentangle a single qubit from all the others
still present in the register. It is, therefore, not totally sur-
prising that the optimization carried out in larger subsystems
requires more repetitions and parameters (i.e., larger n′

j) in
order to make the ansatz more expressive.

By assuming that the stepwise decreasing structure re-
mains suf!ciently good also for a larger number of qubits,
we studied the optimization landscape of global [see (11)]
and local [see (13)] cost functions by investigating how the
hardness of the training procedure scales with increasing N.
As commented above for N = 5, we keep the same underly-
ing target !w, which we expand by appending extra 0 s in the
binary representation. To account for the stochastic nature of
the optimization procedure, we run many simulations of the
same learning task and report the mean number of iterations
needed for the classical optimizer to reach a given target
!delity F = 95%. Results are shown in Fig. 6. The most
signi!cant message is that the use of the aforementioned
local cost function seems to require higher classical resources
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FIG. 3. Optimization of the global unitary with nearest neighbor
entanglement for three different structures differing in the numbers of
entangling blocks n. The cost function is |〈11 . . . 1|V (!θ)|ψw〉|2 = 1 − F (!θ)
[see (11)]. Only for n = 3, the learning model has enough expressibility
to reach a good final fidelity. The classical optimizer used in this case
was COBYLA [44].

FIG. 4. Final fidelity obtained for the local variational training and using
both the all-to-all entangler E (17) and nearest neighbor Enn (20). On top
of each rectangle, in light blue, we reported the depth of the
corresponding quantum circuit to implement that given structure with
that particular entangling scheme. For clarity, a structure “211”
corresponds to a variational model having two repetitions (n′

1 = 2) for
the first layer acting on all four qubits, and one cycle (n′

1 = n′
2 = 1) for

the remaining two layers acting on three and two qubits, respectively.
Each bar was obtained by executing the optimization process ten times
and then evaluating the means and standard deviations (shown as error
bars). The optimization procedure was performed using COBYLA [44].

different n′
j for eachVj(!θ j ) in (18), andwe name structure the

string “n1n2n3.” The latter denotes a learning model consist-
ing of three optimization layers: V1(!θ1) with n1 entangling
cycles, V2(!θ2) with n2 cycles, and V3(!θ3) with n3 cycles. In
the last step of the local optimization procedure, i.e., when
a single qubit is involved, we always assume a single three-
parameter rotation [see (19)]. A similar notation will be also
applied in the following when scaling up to N > 4 qubits.

The effectiveness of different structures is explored in
Fig. 4. We see that, while the all-to-all entangling scheme
typically performs better in comparison to the nearest neigh-
bor one, this increase in performance comes at the cost of

FIG. 5. Final fidelities for different structures of the local variational
learning model with a nearest neighbor entangler, for the case of N = 5
qubits. Similarly to the case with N = 4 qubits portrayed in Fig. 4, the
most depth-efficient structure is the one consisting of constantly
decreasing number of cycles.

deeper circuits. Moreover, the stepwise decreasing structure
“321” for the nearest neighbor entangler proves to be an
effective solution to problem, achieving a good !nal accuracy
(above 99%) with a low circuit depth. This trend is also
con!rmed for the higher dimensional case of N = 5 qubits,
which we report in Fig. 5. Here, the dimension of the un-
derlying pattern recognition task is increased by extending
the original 16-bit weight vector !w with extra 0 s in front of
the binary representation kw. In fact, it can easily be seen
that, assuming directly nearest neighbor entangling blocks,
the decreasing structure “4321” gives the best performance–
depth tradeoff. Such an empirical fact, namely that the most
ef!cient structure is typically the one consisting of decreas-
ing depths, can be heuristically interpreted by recalling again
that, in general, the optimization of a function depending
on the state of a large number of qubits is a hard training
problem [14]. Although we employ local cost functions, to
complete our particular task, each variational layer needs to
successfully disentangle a single qubit from all the others
still present in the register. It is, therefore, not totally sur-
prising that the optimization carried out in larger subsystems
requires more repetitions and parameters (i.e., larger n′

j) in
order to make the ansatz more expressive.

By assuming that the stepwise decreasing structure re-
mains suf!ciently good also for a larger number of qubits,
we studied the optimization landscape of global [see (11)]
and local [see (13)] cost functions by investigating how the
hardness of the training procedure scales with increasing N.
As commented above for N = 5, we keep the same underly-
ing target !w, which we expand by appending extra 0 s in the
binary representation. To account for the stochastic nature of
the optimization procedure, we run many simulations of the
same learning task and report the mean number of iterations
needed for the classical optimizer to reach a given target
!delity F = 95%. Results are shown in Fig. 6. The most
signi!cant message is that the use of the aforementioned
local cost function seems to require higher classical resources
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FIG. 6. Number of iterations of the classical optimizer to reach a fidelity
of F = 95%. Each point in the plot is obtained by running the
optimization procedure ten times and then evaluating the mean and
standard deviation (shown as error bars in the plot). All results refer to
exact simulations of the quantum circuits in the absence of statistical
measurement sampling or device noise, performed with Qiskit
statevector_simulator.

to reach a given target !delity when the number of qubits
increases. This actually should not come as a surprise, since
the number of parameters to be optimized in the two cases is
different. In fact, in the global scenarios, there are N + N · n
(the !rst N is due to the initial layer of rotations) to be opti-
mized, while in the local case there areN + N · n′

1 for the !rst
layer, (N − 1) + (N − 1) · n′

2 for the second,...; for a total of

#local =
N∑

q=2

q+ qn′
q + 3 (21)

where the !nal 3 is due to the fact that the last layer
always consists of a rotation on the Bloch sphere with
three parameters, see (19). Using the stepwise decreasing
structure, that is, n′

q = q− 1, we eventually obtain
∑N

q=2 q+ q(q− 1) =
∑N

q=2 q
2 ∼ O(N3), compared to

#global ∼ O(N2). Here, we are assuming a number of layers
n = N − 1, consistently with the N = 4 qubits case (see
Fig. 3). While, in the global case, the optimization makes
full use of the available parameters to globally optimize
the state toward |1〉⊗N , the local unitary has to go through
multiple disentangling stages, requiring (at least for the cases
presented here) more classical iteration steps. At the same
time, it would probably be interesting to investigate other ex-
amples in which the number of parameters between the two
alternative schemes remains !xed, as this would most likely
narrow the differences and provide amore direct comparison.
In agreement with similar investigations [45], we can ac-

tually conclude that only modest differences between global
and local layerwise optimization approaches are present
when dealing with exact simulations (i.e., free from statisti-
cal and hardware noise) of the quantum circuit. Indeed, both
strategies achieve good results and a !nal !delity F (!θ ) >

99%. At the same time, it becomes interesting to investigate
how the different approaches behave in the presence of noise

FIG. 7. Optimization of cost functions for the (a) local and (b) global
case in the presence of measurement noise for N = 5 qubits. In each
figure, we plot the mean values averaged on five runs of the simulation.
The shaded colored areas denote one standard deviation. The number of
measurement repetitions in each simulation was 1024. The final fidelity
at the end of the training procedure in this case were
Flocal = 0.87 ± 0.02 and Fglobal = 0.89 ± 0.02. Notice the difference in
the horizontal axes bounds. (a) Optimization of the local cost functions
Vj (!θ j ) [see (13)], plotted with different colors for clarity. The vertical
dashed lines denotes the end of the optimization of one layer, and the
start of the optimization for the following one. (b) Optimization of the
global cost function V (!θ) in (11).

and speci!cally statistical noise coming from measurements
operations. For this reason, we implemented the measure-
ment sampling using the Qiskit qasm_simulator and
employed a stochastic gradient descent (SPSA) classical
optimization method. Each benchmark circuit is executed
nshots = 1024 times in order to reconstruct the statistics of
the outcomes. Moreover, we repeat the stochastic optimiza-
tion routine multiple times to analyze the average behav-
ior of the cost function. In Fig. 7, we show the optimiza-
tion procedure for the local and global cost functions in the
presence of measurement noise, with both of them reaching
acceptable and identical !nal !delities Flocal = 0.87 ± 0.02
and Fglobal = 0.89 ± 0.02. Notice that for the local case [see
Fig. 7(a)], each colored line indicates the optimization of a
Vj(!θ j ) from (13). We observe that the training for the local
model generally requires fewer iterations, with an effective
optimization of each single layer. On the contrary, in the pres-
ence of measurement noise, the global variational training
struggles to !nd a good direction for the optimization and
eventually follows a slowly decreasing path to the minimum.
These !ndings look to be in agreement, e.g., with results
from [45] and [46]: with the introduction of statistical shot
noise, the performances of the global model are heavily af-
fected, while the local approach proves to be more resilient
and capable of !nding a good gradient direction in the pa-
rameters space [46]. In all these simulations, the parameters
in the global unitary and in the !rst layer of the local unitary
were initialized with a random distribution in [0, 2π ). All
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FIG. 6. Number of iterations of the classical optimizer to reach a fidelity
of F = 95%. Each point in the plot is obtained by running the
optimization procedure ten times and then evaluating the mean and
standard deviation (shown as error bars in the plot). All results refer to
exact simulations of the quantum circuits in the absence of statistical
measurement sampling or device noise, performed with Qiskit
statevector_simulator.

to reach a given target !delity when the number of qubits
increases. This actually should not come as a surprise, since
the number of parameters to be optimized in the two cases is
different. In fact, in the global scenarios, there are N + N · n
(the !rst N is due to the initial layer of rotations) to be opti-
mized, while in the local case there areN + N · n′

1 for the !rst
layer, (N − 1) + (N − 1) · n′

2 for the second,...; for a total of

#local =
N∑

q=2

q+ qn′
q + 3 (21)

where the !nal 3 is due to the fact that the last layer
always consists of a rotation on the Bloch sphere with
three parameters, see (19). Using the stepwise decreasing
structure, that is, n′

q = q− 1, we eventually obtain
∑N

q=2 q+ q(q− 1) =
∑N

q=2 q
2 ∼ O(N3), compared to

#global ∼ O(N2). Here, we are assuming a number of layers
n = N − 1, consistently with the N = 4 qubits case (see
Fig. 3). While, in the global case, the optimization makes
full use of the available parameters to globally optimize
the state toward |1〉⊗N , the local unitary has to go through
multiple disentangling stages, requiring (at least for the cases
presented here) more classical iteration steps. At the same
time, it would probably be interesting to investigate other ex-
amples in which the number of parameters between the two
alternative schemes remains !xed, as this would most likely
narrow the differences and provide amore direct comparison.
In agreement with similar investigations [45], we can ac-

tually conclude that only modest differences between global
and local layerwise optimization approaches are present
when dealing with exact simulations (i.e., free from statisti-
cal and hardware noise) of the quantum circuit. Indeed, both
strategies achieve good results and a !nal !delity F (!θ ) >

99%. At the same time, it becomes interesting to investigate
how the different approaches behave in the presence of noise

FIG. 7. Optimization of cost functions for the (a) local and (b) global
case in the presence of measurement noise for N = 5 qubits. In each
figure, we plot the mean values averaged on five runs of the simulation.
The shaded colored areas denote one standard deviation. The number of
measurement repetitions in each simulation was 1024. The final fidelity
at the end of the training procedure in this case were
Flocal = 0.87 ± 0.02 and Fglobal = 0.89 ± 0.02. Notice the difference in
the horizontal axes bounds. (a) Optimization of the local cost functions
Vj (!θ j ) [see (13)], plotted with different colors for clarity. The vertical
dashed lines denotes the end of the optimization of one layer, and the
start of the optimization for the following one. (b) Optimization of the
global cost function V (!θ) in (11).

and speci!cally statistical noise coming from measurements
operations. For this reason, we implemented the measure-
ment sampling using the Qiskit qasm_simulator and
employed a stochastic gradient descent (SPSA) classical
optimization method. Each benchmark circuit is executed
nshots = 1024 times in order to reconstruct the statistics of
the outcomes. Moreover, we repeat the stochastic optimiza-
tion routine multiple times to analyze the average behav-
ior of the cost function. In Fig. 7, we show the optimiza-
tion procedure for the local and global cost functions in the
presence of measurement noise, with both of them reaching
acceptable and identical !nal !delities Flocal = 0.87 ± 0.02
and Fglobal = 0.89 ± 0.02. Notice that for the local case [see
Fig. 7(a)], each colored line indicates the optimization of a
Vj(!θ j ) from (13). We observe that the training for the local
model generally requires fewer iterations, with an effective
optimization of each single layer. On the contrary, in the pres-
ence of measurement noise, the global variational training
struggles to !nd a good direction for the optimization and
eventually follows a slowly decreasing path to the minimum.
These !ndings look to be in agreement, e.g., with results
from [45] and [46]: with the introduction of statistical shot
noise, the performances of the global model are heavily af-
fected, while the local approach proves to be more resilient
and capable of !nding a good gradient direction in the pa-
rameters space [46]. In all these simulations, the parameters
in the global unitary and in the !rst layer of the local unitary
were initialized with a random distribution in [0, 2π ). All

3101110 VOLUME 2, 2021



/28

Stefano Mangini, ML Summer School, 28/08/21
27

Scaling

Scaling of the circuit 

depth wrt the number of 

qubits

Whatever the structure 

(global or local, a2a or nn), 

the variational approach 

requires much less 

computation wrt to exact 

implementation!

Tacchino et al.: VARIATIONAL LEARNING FOR QUANTUM ARTIFICIAL NEURAL NETWORKS Engineeringuantum
Transactions onIEEE

FIG. 8. Scaling of circuit depth for the implementation of Uw computed
with Qiskit. The labels locals and global refer to the local and global
variational approaches, while a2a and nn refer to the all-to-all and
nearest neighbor entangling schemes, respectively. The number of ansatz
cycles used for both the global (n) and local/qubit-by-qubit (n′)
variational constructions and for each entangling structure are increased
with the number of qubits up to the minimum value guaranteeing a
fidelity of the approximations above 98%.

subsequent layers in the local model were initialized with all
parameters set to zero in order to allow for smooth transitions
from one optimization layer to the following. This strategy
was actually suggested as a possible way to mitigate the
occurrence of Barren plateaus [45], [47].

We conclude the scaling analysis by reporting in Fig. 8 a
summary of the quantum circuit depths required to imple-
ment the target unitary transformation with different strate-
gies and for increasing sizes of the qubit register up toN = 7.
Evidently, all the variational approaches scale much better
when compared to the exact implementation of the target
Uw, with the global ones requiring shallower depths in the
speci!c case. In addition, we recall that the use of an all-
to-all entangling scheme requires longer circuits due to the
implementation of all the cnots, but generally needs less
ansatz cycles (see Fig. 4). At last, while the global proce-
dures seem to provide a better alternative compared to local
ones in terms of circuit depth, they might be more prone to
suffering from classical optimization issues [14], [45] when
trained and executed on real hardware, as suggested by the
data reported in Fig. 7. The overall promising results con!rm
the signi!cant advantage brought by variational strategies
compared to the exponential increase of complexity required
by the exact formulation of the algorithm.

IV. CONCLUSION
In this article, we reviewed an exact model for the implemen-
tation of arti!cial neurons on a quantum processor, and we
introduced variational training methods for ef!ciently han-
dling the manipulation of classical and quantum input data.
Through extensive numerical analysis, we compared the ef-
fectiveness of different circuit structures and learning strate-
gies, highlighting potential bene!ts brought by hardware-
compatible entangling operations and by layerwise training

routines. This article suggests that quantum unsampling tech-
niques represent a useful resource, upon input of quantum
training sets, to be integrated in quantum machine learning
applications. From a theoretical perspective, our proposed
procedure allows for an explicit and direct quanti!cation of
possible quantum computational advantages for classi!ca-
tion tasks. It is also worth pointing out that such a scheme
remains fully compatible with recently introduced architec-
tures for quantum feedforward neural networks [30], which
are needed, in general, to deploy, e.g., complex convolutional
!lters. Moreover, although the interpretation of quantum hy-
pergraph states as memory-ef!cient carriers of classical in-
formation guarantees an optimal use of the available dimen-
sion of an N-qubit Hilbert space, the variational techniques
introduced here can, in principle, be used to learn differ-
ent encoding schemes designed, e.g., to include continuous-
valued features or to improve the separability of the data to be
classi!ed [23], [24], [48]. In all envisioned applications, our
proposed protocols are intended as an effective method for
the analysis of quantum states as provided, e.g., by external
devices or sensors, while it is worth stressing that the general
problem of ef!ciently loading classical data into quantum
registers still stands open. Finally, on a more practical level, a
successful implementation on near-term quantum hardware
of the variational learning algorithm introduced in this article
will necessarily rely on a deeper analysis of the impact of
realistic noise effects both on the training procedure and on
the !nal optimized circuit. In particular, we anticipate that
the reduced circuit depth produced via the proposed method
could critically lessen the quality requirements for quantum
hardware, eventually leading to meaningful implementation
of quantum neural networks within the near-term regime.
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`2�bQM- bi�i2b rBi? x2`Q Q` π T?�b2 vB2H/ i?2 b�K2 �+iB@
p�iBQM 7mM+iBQM- r?B+? BM im`M K2�Mb i?�i BK�;2b rBi?
BMp2`i2/ +QHQ`b UBX2X- #v 2t+?�M;BM; r?Bi2 rBi? #H�+FV
rQmH/ #2 `2+Q;MBx2/ �b 2[mBp�H2Mi #v i?Bb T2`+2Ti`QM
KQ/2HX >2M+2- iQ /BbiBM;mBb? � ;Bp2M BK�;2 7`QK Bib M2;@
�iBp2- r2 7m`i?2` `2bi`B+i i?2 BMTmi �M/ r2B;?i 2H2K2Mib
iQ HB2 BM i?2 `�M;2 [0,π/2]X h?mb- �M BK�;2 bm+? �b i?2
QM2 `2TQ`i2/ BM 6B;X \\ Bb bm#D2+i iQ i?2 MQ`K�HBx�iBQM
(255, 170, 85, 0) → π/2

255 (255, 170, 85, 0)- #27Q`2 mbBM; Bi �b
�M BMTmi p2+iQ` iQ #2 2M+Q/2/ BMiQ i?2 [m�MimK M2m`QM
KQ/2HX
q2 BKTH2K2Mi2/ �M/ i2bi2/ i?2 [m�MimK +B`+mBi #Qi? QM
bBKmH�iQ`b �M/ QM `2�H [m�MimK ?�`/r�`2- #v mbBM; i?2
A"J Zm�MimK 1tT2`B2M+2 k �M/ ZBbFBi (\ )X h?2 `2bmHib
�`2 `2TQ`i2/ BM i?2 7QHHQrBM;X

R h?Bb 2M+Q/BM; Q7 ;`�vb+�H2 BK�;2b 2KTHQvb � bBM;H2 #vi2 UBX2X- 3
#BibV T2` TBt2H QM � +H�bbB+�H +QKTmiBM; `2;Bbi2`X

k ?iiTb,ff[m�MimK@+QKTmiBM;XB#KX+QKf

�X LmK2`B+�H _2bmHib

hQ #2ii2` �TT`2+B�i2 i?2 TQi2MiB�HBiB2b Q7 i?2 +QMiBM@
mQmbHv p�Hm2/ [m�MimK M2m`QM- r2 �M�Hvb2 Bib T2`7Q`@
K�M+2 BM `2+Q;MBxBM; bBKBH�` BK�;2bX q2 }t i?2 r2B;?i
p2+iQ` iQ φ = (π/2, 0, 0,π/2)- r?B+? +Q``2bTQM/b iQ i?2
+?2+F2`#Q�`/ T�ii2`M `2T`2b2Mi2/ BM i?2 BK�;2 Q7 6B;X \\-
�M/ i?2M ;2M2`�i2 � 72r `�M/QK BK�;2b iQ #2 mb2/ �b
BMTmib iQ i?2 [m�MimK M2m`QMX 6Q` 2�+? BMTmi- i?2 +B`@
+mBi Bb 2t2+mi2/ KmHiBTH2 iBK2b- i?mb #mBH/BM; � bi�iBb@
iB+b Q7 i?2 Qmi+QK2bX qBi? m = 30 `�M/QK ;2M2`�i2/
BK�;2b- i?2 `2bmHib Q7 i?2 +H�bbB}+�iBQM �`2 /2TB+i2/ BM
6B;X \\- r?B+? BM+Hm/2b i?2 �M�HviB+ `2bmHib- i?2 `2bmHib
Q7 MmK2`B+�H bBKmH�iBQMb `mM QM ZBbFBi Z�aJ aBKmH�iQ`
#�+F2M/- �M/ }M�HHv i?2 `2bmHib Q#i�BM2/ #v 2t2+miBM;
i?2 [m�MimK +B`+mBi QM i?2 B#K[tk@vQ`FiQrM U�++2bb2/
BM J�`+? kykyV `2�H /2pB+2X .m2 iQ 2``Q`b BM i?2 �+im�H
[m�MimK T`Q+2bbBM; /2pB+2- i?2 bi�iBbiB+b Q7 i?2 Qmi+QK2
/Bz2` 7`QK 2Bi?2` i?2 bBKmH�i2/ QM2 Q` i?2 �M�HviB+ `2@
bmHiX L2p2`i?2H2bb- i?2 b�K2 Qp2`�HH #2?�pBQm` +�M #2
2�bBHv `2+Q;MBb2/- i?mb b?QrBM; i?�i i?2 [m�MimK M2m`QM
+B`+mBi +�M #2 bm++2bb7mHHv BKTH2K2Mi2/ �HbQ BM �M �+im�H
[m�MimK T`Q+2bbQ` ;BpBM; `2HB�#H2 `2bmHib 7Q` bm+? `2+Q;@
MBiBQM i�bFbX h?2 BK�;2b T`Q/m+BM; i?2 H�`;2bi �+iBp�iBQM
�`2 i?2 QM2b +Q``2bTQM/BM; iQ BMTmi p2+iQ`b bBKBH�` iQ i?2
+?2+F2`#Q�`/@HBF2 r2B;?i p2+iQ`- r?B+? +QM}`Kb i?2 /2@
bB`2/ #2?�pBQm` Q7 i?2 [m�MimK M2m`QM BM `2+Q;MBxBM;
bBKBH�` BK�;2bX PM i?2 +QMi`�`v- i?2 BK�;2b rBi? HQr2bi
�+iBp�iBQM �`2 bBKBH�` iQ i?2 M2;�iBp2 Q7 i?2 i�`;2i r2B;?i
p2+iQ`- �b /2bB`2/X

AoX G1�_LAL:

h?2 T`Q+2bb Q7 }M/BM; i?2 �TT`QT`B�i2 p�Hm2 7Q` i?2
r2B;?ib iQ BKTH2K2Mi � ;Bp2M +H�bbB}+�iBQM Bb +�HH2/ H2�`M@
BM;- �M/ Bi Bb ;2M2`�HHv #�b2/ mTQM �M QTiBKBx�iBQM T`Q@
+2/m`2 BM r?B+? � +Qbi 7mM+iBQM Bb KBMBKBx2/ #v bQK2
;`�/B2Mi /2b+2Mi i2+?MB[m2X A/2�HHv- i?2 KBMBKmK Q7 i?2
+Qbi 7mM+iBQM +Q``2bTQM/b iQ i?2 i�`;2i2/ bQHmiBQMX

� bBKTH2 H2�`MBM; i�bF 7Q` Qm` [m�MimK M2m`QM Bb iQ
`2+Q;MBx2 � bBM;H2 ;Bp2M BMTmiX ai�`iBM; 7`QK �M BMTmi
p2+iQ`- θ- r2 �BK �i }M/BM; � r2B;?i p2+iQ`- φ- T`Q/m+BM;

Discrete I/O

Continuous I/O
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Extra\Local approach for 5 qubits

Optimization of local 

unitary for 5 qubits

Again, the most efficient 

structure is the always 

decreasing one. 

Tacchino et al.: VARIATIONAL LEARNING FOR QUANTUM ARTIFICIAL NEURAL NETWORKS Engineeringuantum
Transactions onIEEE

FIG. 3. Optimization of the global unitary with nearest neighbor
entanglement for three different structures differing in the numbers of
entangling blocks n. The cost function is |〈11 . . . 1|V (!θ)|ψw〉|2 = 1 − F (!θ)
[see (11)]. Only for n = 3, the learning model has enough expressibility
to reach a good final fidelity. The classical optimizer used in this case
was COBYLA [44].

FIG. 4. Final fidelity obtained for the local variational training and using
both the all-to-all entangler E (17) and nearest neighbor Enn (20). On top
of each rectangle, in light blue, we reported the depth of the
corresponding quantum circuit to implement that given structure with
that particular entangling scheme. For clarity, a structure “211”
corresponds to a variational model having two repetitions (n′

1 = 2) for
the first layer acting on all four qubits, and one cycle (n′

1 = n′
2 = 1) for

the remaining two layers acting on three and two qubits, respectively.
Each bar was obtained by executing the optimization process ten times
and then evaluating the means and standard deviations (shown as error
bars). The optimization procedure was performed using COBYLA [44].

different n′
j for eachVj(!θ j ) in (18), andwe name structure the

string “n1n2n3.” The latter denotes a learning model consist-
ing of three optimization layers: V1(!θ1) with n1 entangling
cycles, V2(!θ2) with n2 cycles, and V3(!θ3) with n3 cycles. In
the last step of the local optimization procedure, i.e., when
a single qubit is involved, we always assume a single three-
parameter rotation [see (19)]. A similar notation will be also
applied in the following when scaling up to N > 4 qubits.

The effectiveness of different structures is explored in
Fig. 4. We see that, while the all-to-all entangling scheme
typically performs better in comparison to the nearest neigh-
bor one, this increase in performance comes at the cost of

FIG. 5. Final fidelities for different structures of the local variational
learning model with a nearest neighbor entangler, for the case of N = 5
qubits. Similarly to the case with N = 4 qubits portrayed in Fig. 4, the
most depth-efficient structure is the one consisting of constantly
decreasing number of cycles.

deeper circuits. Moreover, the stepwise decreasing structure
“321” for the nearest neighbor entangler proves to be an
effective solution to problem, achieving a good !nal accuracy
(above 99%) with a low circuit depth. This trend is also
con!rmed for the higher dimensional case of N = 5 qubits,
which we report in Fig. 5. Here, the dimension of the un-
derlying pattern recognition task is increased by extending
the original 16-bit weight vector !w with extra 0 s in front of
the binary representation kw. In fact, it can easily be seen
that, assuming directly nearest neighbor entangling blocks,
the decreasing structure “4321” gives the best performance–
depth tradeoff. Such an empirical fact, namely that the most
ef!cient structure is typically the one consisting of decreas-
ing depths, can be heuristically interpreted by recalling again
that, in general, the optimization of a function depending
on the state of a large number of qubits is a hard training
problem [14]. Although we employ local cost functions, to
complete our particular task, each variational layer needs to
successfully disentangle a single qubit from all the others
still present in the register. It is, therefore, not totally sur-
prising that the optimization carried out in larger subsystems
requires more repetitions and parameters (i.e., larger n′

j) in
order to make the ansatz more expressive.

By assuming that the stepwise decreasing structure re-
mains suf!ciently good also for a larger number of qubits,
we studied the optimization landscape of global [see (11)]
and local [see (13)] cost functions by investigating how the
hardness of the training procedure scales with increasing N.
As commented above for N = 5, we keep the same underly-
ing target !w, which we expand by appending extra 0 s in the
binary representation. To account for the stochastic nature of
the optimization procedure, we run many simulations of the
same learning task and report the mean number of iterations
needed for the classical optimizer to reach a given target
!delity F = 95%. Results are shown in Fig. 6. The most
signi!cant message is that the use of the aforementioned
local cost function seems to require higher classical resources
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Extra\Some cool properties

f(θ, ϕ) =
1
2N

+
1

22N−1

2N−1

∑
i<j

cos((θj − ϕj) − (θi − ϕi))

Shift invariance

f(θ, θ) =
1
2N

+
1

22N−1

2N−1

∑
i<j

=
1
2N

+
1

22N−1

2N(2N − 1)
2

= 1

Activation  

Function

If

θ = ϕ + Δbut also for Δ = (Δ, Δ, ⋯, Δ)with  a constant!Δ

The activation function is 

color shift invariant, i.e. 

f(θ, ϕ) = f(θ, ϕ + Δ)

θ = ϕ + Δ, Δj ∼ Unif(−a/2, a/2)

⟨ f(θ, ϕ)⟩ ≈ 1 − O(a2)

Noise resilience

like coherent errors due to  

under/over-rotations in  

parametrized gates


